ruqola-server-deploy

NVIDIA H200 GPU Specifications and Capabilities

Technical specifications and optimization guidelines for the NVIDIA H200 Tensor Core GPUs in the Ruqola server.

📖 Table of Contents

  1. Hardware Specifications
  2. Memory Architecture
  3. Compute Capabilities
  4. Performance Characteristics
  5. Optimization Guidelines
  6. Comparison with Other GPUs
  7. Best Use Cases

Hardware Specifications

NVIDIA H200 SXM Overview

Our server is equipped with 3x NVIDIA H200 SXM5 GPUs with the following specifications:

Specification Value
GPU Architecture Hopper (GH200)
Process Node TSMC 4N (4nm)
Transistors 80 billion
SM (Streaming Multiprocessors) 134
CUDA Cores 16,896
RT Cores 4th Gen (134 units)
Tensor Cores 4th Gen (528 units)
Base Clock 1,830 MHz
Boost Clock 2,600 MHz

Memory Specifications

Memory Feature H200 SXM5
Memory Type HBM3e
Memory Capacity 141 GB
Memory Bandwidth 4,800 GB/s
Memory Bus Width 5,120-bit
L2 Cache 50 MB
Memory Clock 4,800 MHz

Power and Thermal

Specification Value
Total Graphics Power (TGP) 700W
Form Factor SXM5
Cooling Liquid Cooling Required
Operating Temperature 0°C to 35°C

Memory Architecture

HBM3e Memory System

The H200’s HBM3e memory system provides exceptional bandwidth and capacity:

┌─────────────────────────────────────┐
│           GPU Die (GH200)           │
├─────────────────────────────────────┤
│  L2 Cache: 50 MB (Shared)          │
├─────────────────────────────────────┤
│  HBM3e Memory: 141 GB              │
│  Bandwidth: 4,800 GB/s             │
│  5,120-bit Memory Interface        │
└─────────────────────────────────────┘

Memory Hierarchy

  1. Registers (per thread): ~255 registers × 32-bit
  2. Shared Memory (per SM): 228 KB configurable
  3. L1 Cache (per SM): 128 KB
  4. L2 Cache (global): 50 MB
  5. HBM3e (global): 141 GB at 4,800 GB/s

Memory Bandwidth Utilization

# Theoretical peak memory bandwidth test
import torch
import time

def memory_bandwidth_test(size_gb=10):
    device = torch.device('cuda')
    
    # Create tensors
    size = int(size_gb * 1024**3 / 4)  # float32 = 4 bytes
    a = torch.randn(size, device=device)
    b = torch.randn(size, device=device)
    
    # Warmup
    for _ in range(10):
        c = a + b
    
    torch.cuda.synchronize()
    start = time.time()
    
    # Memory bandwidth test
    for _ in range(100):
        c = a + b  # Read 2 tensors, write 1 tensor
    
    torch.cuda.synchronize()
    elapsed = time.time() - start
    
    # Calculate bandwidth (3 * size_gb * 100 operations / elapsed time)
    bandwidth = (3 * size_gb * 100) / elapsed
    print(f"Memory bandwidth: {bandwidth:.1f} GB/s")
    print(f"Utilization: {bandwidth/4800*100:.1f}% of peak")

memory_bandwidth_test()

Compute Capabilities

CUDA Compute Capability

The H200 supports CUDA Compute Capability 9.0 (Hopper):

# Check compute capability
nvidia-smi --query-gpu=compute_cap --format=csv,noheader
# Output: 9.0

Tensor Core Capabilities

4th Generation Tensor Cores

Data Type Matrix Size Peak Performance (per SM)
FP16 16×16×16 256 TOPS
BF16 16×16×16 256 TOPS
TF32 16×16×16 128 TOPS
FP8 16×16×16 512 TOPS
INT8 16×16×16 512 TOPS
INT4 16×16×16 1024 TOPS

Tensor Core Usage in Deep Learning

# PyTorch automatic mixed precision with H200
import torch
from torch.cuda.amp import autocast, GradScaler

model = MyModel().cuda()
optimizer = torch.optim.AdamW(model.parameters())
scaler = GradScaler()

for data, target in dataloader:
    optimizer.zero_grad()
    
    # Use autocast for forward pass
    with autocast():
        output = model(data)
        loss = criterion(output, target)
    
    # Scale loss and backward pass
    scaler.scale(loss).backward()
    scaler.step(optimizer)
    scaler.update()

CUDA Cores Performance

Performance Characteristics

Memory Bandwidth Scaling

# Test memory bandwidth with different data sizes
import torch
import numpy as np
import matplotlib.pyplot as plt

def bandwidth_vs_size():
    sizes = [1, 2, 4, 8, 16, 32, 64, 100]  # GB
    bandwidths = []
    
    for size_gb in sizes:
        # Run bandwidth test
        bandwidth = memory_bandwidth_test(size_gb)
        bandwidths.append(bandwidth)
    
    # Plot results
    plt.figure(figsize=(10, 6))
    plt.plot(sizes, bandwidths, 'b-o')
    plt.axhline(y=4800, color='r', linestyle='--', label='Peak Bandwidth')
    plt.xlabel('Data Size (GB)')
    plt.ylabel('Bandwidth (GB/s)')
    plt.title('H200 Memory Bandwidth vs Data Size')
    plt.legend()
    plt.grid(True)
    plt.savefig('h200_bandwidth.png')

Compute Performance

Matrix Multiplication Performance

# GEMM performance test
import torch
import time

def gemm_performance_test():
    device = torch.device('cuda')
    sizes = [1024, 2048, 4096, 8192, 16384]
    
    for size in sizes:
        a = torch.randn(size, size, device=device, dtype=torch.float16)
        b = torch.randn(size, size, device=device, dtype=torch.float16)
        
        # Warmup
        for _ in range(10):
            c = torch.mm(a, b)
        
        torch.cuda.synchronize()
        start = time.time()
        
        for _ in range(100):
            c = torch.mm(a, b)
        
        torch.cuda.synchronize()
        elapsed = time.time() - start
        
        # Calculate TFLOPS
        ops = 2 * size**3 * 100  # multiply-accumulate operations
        tflops = ops / elapsed / 1e12
        
        print(f"Matrix size {size}x{size}: {tflops:.2f} TFLOPS")

gemm_performance_test()

Optimization Guidelines

Memory Optimization

  1. Maximize Memory Utilization:
    # Use all available memory effectively
    batch_size = calculate_max_batch_size(model, input_size, memory_limit=130)  # Leave 11GB buffer
    
  2. Memory-Efficient Training:
    # Gradient checkpointing for large models
    model = torch.utils.checkpoint.checkpoint_sequential(model, segments=4)
       
    # Gradient accumulation for large effective batch sizes
    accumulation_steps = 4
    for i, batch in enumerate(dataloader):
        loss = model(batch) / accumulation_steps
        loss.backward()
           
        if (i + 1) % accumulation_steps == 0:
            optimizer.step()
            optimizer.zero_grad()
    

Compute Optimization

  1. Use Tensor Cores:
    # Enable automatic mixed precision
    model = model.half()  # FP16 model
       
    # Or use autocast
    with torch.autocast('cuda'):
        output = model(input)
    
  2. Optimize Tensor Shapes:
    # Ensure tensor dimensions are multiples of 8 for optimal Tensor Core usage
    batch_size = 64  # Multiple of 8
    hidden_dim = 4096  # Multiple of 8
    seq_length = 2048  # Multiple of 8
    

Data Loading Optimization

# Optimized data loading for H200
dataloader = torch.utils.data.DataLoader(
    dataset,
    batch_size=batch_size,
    num_workers=8,  # Match CPU cores
    pin_memory=True,  # Faster GPU transfer
    persistent_workers=True,  # Reduce worker restart overhead
    prefetch_factor=2,  # Prefetch batches
)

Comparison with Other GPUs

Performance Comparison

GPU Model Memory Memory BW FP16 TFLOPS Architecture
H200 SXM 141 GB 4,800 GB/s 134 TFLOPS Hopper
H100 SXM 80 GB 3,350 GB/s 126 TFLOPS Hopper
A100 SXM 80 GB 2,039 GB/s 77 TFLOPS Ampere
V100 SXM 32 GB 900 GB/s 31 TFLOPS Volta
RTX 4090 24 GB 1,008 GB/s 42 TFLOPS Ada Lovelace

Memory Capacity Advantages

# Models that benefit from H200's large memory:
models_by_memory = {
    "GPT-3 175B": "350+ GB",  # Needs model parallelism on other GPUs
    "LLaMA 65B": "130 GB",    # Fits on single H200!
    "Stable Diffusion XL": "12 GB",  # Much headroom for batch size
    "BERT Large": "1.3 GB",   # Can run huge batch sizes
}

Best Use Cases

Ideal Workloads for H200

  1. Large Language Models:
    # Train/finetune models up to ~65B parameters on single GPU
    model = AutoModelForCausalLM.from_pretrained(
        "meta-llama/Llama-2-70b-hf",
        torch_dtype=torch.float16,
        device_map="auto"
    )
    
  2. Computer Vision with Large Images:
    # Process high-resolution images with large batch sizes
    batch_size = 128  # Much larger than possible on smaller GPUs
    image_size = 1024  # Higher resolution training
    
  3. Scientific Computing:
    # Large-scale numerical simulations
    simulation_grid = torch.zeros(8192, 8192, 8192, device='cuda')  # 2TB+ data
    
  4. Multi-Modal Models:
    # Train large vision-language models
    model = VisionLanguageModel(
        vision_dim=2048,
        text_dim=4096,
        hidden_dim=8192,  # Large hidden dimensions
        num_layers=48
    )
    

Optimization Strategies by Use Case

Large Language Models

# Memory-efficient LLM training
from transformers import AutoModelForCausalLM
from torch.optim import AdamW
from torch.cuda.amp import autocast, GradScaler

model = AutoModelForCausalLM.from_pretrained(
    model_name,
    torch_dtype=torch.float16,
    gradient_checkpointing=True,
    use_cache=False  # Save memory during training
)

# Use DeepSpeed ZeRO for even larger models
from deepspeed import initialize
model_engine, optimizer, _, _ = initialize(
    model=model,
    config="deepspeed_config.json"
)

Computer Vision

# High-throughput image processing
def create_optimized_dataloader(dataset, batch_size=256):
    return torch.utils.data.DataLoader(
        dataset,
        batch_size=batch_size,  # Large batch size utilizing full memory
        num_workers=12,
        pin_memory=True,
        persistent_workers=True,
        prefetch_factor=3
    )

# Mixed precision training for CNNs
with autocast():
    output = model(images)
    loss = criterion(output, labels)

scaler.scale(loss).backward()

Scientific Computing

# Large tensor operations
def scientific_simulation():
    # Large 3D simulation grids
    grid = torch.zeros(2048, 2048, 2048, device='cuda', dtype=torch.float32)
    
    # Physics-informed neural networks with large domains
    coordinates = torch.rand(1000000, 3, device='cuda')  # 1M sample points
    solution = physics_model(coordinates)

Performance Monitoring

# Monitor H200 utilization
import torch
import nvidia_ml_py3 as nvml

def monitor_gpu_usage():
    nvml.nvmlInit()
    handle = nvml.nvmlDeviceGetHandleByIndex(0)
    
    # Memory usage
    mem_info = nvml.nvmlDeviceGetMemoryInfo(handle)
    memory_used = mem_info.used / 1024**3  # GB
    memory_total = mem_info.total / 1024**3  # GB
    
    # Utilization
    util = nvml.nvmlDeviceGetUtilizationRates(handle)
    gpu_util = util.gpu
    mem_util = util.memory
    
    # Temperature
    temp = nvml.nvmlDeviceGetTemperature(handle, nvml.NVML_TEMPERATURE_GPU)
    
    print(f"Memory: {memory_used:.1f}/{memory_total:.1f} GB ({memory_used/memory_total*100:.1f}%)")
    print(f"GPU Utilization: {gpu_util}%")
    print(f"Memory Utilization: {mem_util}%")
    print(f"Temperature: {temp}°C")

# Run periodically during training
import threading
import time

def monitoring_thread():
    while training:
        monitor_gpu_usage()
        time.sleep(10)

monitor = threading.Thread(target=monitoring_thread)
monitor.start()

Next Steps: